Virtual Reality Pain Therapy Research System

Markus Brocker (11)

Working in close collaboration with Health Sciences Dr Ross Smith developed a virtual reality simulation system to support research into chronic neck pain therapies. The systems adopts a well know technique, amongst Virtual Reality researchers, called “re-directed walking” which alters user perception between the physical and virtual worlds. Re-directed walking applies a slight correction to the participant’s orientation so in the physical world their movement is different from the virtual environment. With this users in the virtual environment can perceive they are walk along an infinantely straight line although in the physcial world they are actually walking in circles.

The re-directed walking method was adopted to alter the head movements of 24 participants suffering chronic neck pain. Participants wore an Oculus Rift Head Mounted Display and were asked to rotate their head left and right until their first onset of pain. The system changed participant’s perception so as the actual movement could be more, less or the same as what is perceived in the virtual world. The study showed that participants had more pain free head rotation when the system reduced appearance from the actual head rotation allowing 6% improvement in head mobility. The initial findings are positive that such techniques might be further developed and used in future therapies that employ virtual reality systems. The full article was published in the Journal of Psychological Science.

Pain is a perceptual response, one that researchers are finding is influenced by contextual, psychological, and sensory factors. In a study of the influence of visual feedback on pain, participants with neck pain rotated their heads while receiving different types of visual feedback through a virtual reality headset. The visual feedback gave the illusion that participants had turned their heads more, less, or to a degree equal to the actual physical rotation. Participants had a larger pain-free range of motion when they received understated visual feedback and a smaller pain-free range of motion when they received overstated visual feedback. The authors posit that, over time, sensory factors associated with pain may turn into triggers for the pain itself.


Daniel S. Harvie, Markus Broecker, Ross T. Smith, Ann Meulders, Victoria J. Madden, and G. Lorimer Moseley